Alkylating potential of styrene oxide: reactions and factors involved in the alkylation process.
نویسندگان
چکیده
The chemical reactivity of styrene-7,8-oxide (SO), an alkylating agent with high affinity for the guanine–N7 position and a probable carcinogen for humans, with 4-(p-nitrobenzyl)pyridine (NBP), a trap for alkylating agents with nucleophilic characteristics similar to those of DNA bases, was investigated kinetically in water/dioxane media. UV–vis spectrophotometry and ultrafast liquid chromatography were used to monitor the reactions involved. It was found that in the alkylation process four reactions occur simultaneously: (a) the formation of a β-NBP–SO adduct through an SN2 mechanism; (b) the acid-catalyzed formation of the stable α-NBP–SO adduct through an SN2′ mechanism; (c) the base-catalyzed hydrolysis of the β-adduct, and (d) the acid-catalyzed hydrolysis of SO. At 37.5 °C and pH = 7.0 (in 7:3 water/dioxane medium), the values of the respective reaction rate constants were as follows: kalkβ = (2.1 ± 0.3) × 10–4 M–1 s–1, kalkα = (1.0 ± 0.1) × 10–4 M–1 s–1, khydAD = (3.06 ± 0.09) × 10–6 s–1, and khyd = (4.2 ± 0.9) × 10–6 s–1. These values show that, in order to determine the alkylating potential of SO, none of the four reactions involved can be neglected. Temperature and pH were found to exert a strong influence on the values of some parameters that may be useful to investigate possible chemicobiological correlations (e.g., in the pH 5.81–7.69 range, the fraction of total adducts formed increased from 24% to 90% of the initial SO, whereas the adduct lifetime of the unstable β-adduct, which gives an idea of the permanence of the adduct over time, decreased from 32358 to 13313 min). A consequence of these results is that the conclusions drawn in studies addressing alkylation reactions at temperatures and/or pH far from those of biological conditions should be considered with some reserve.
منابع مشابه
Application of GA in Optimization of Modified Benzene Alkylation Process
A genetic algorithm is used to optimize the modified benzene alkylation process. Based on the previous studies, the modified process increases ethylbenzene selectivity and decreases energy consumption at the same time. The inlet ethylene flow rate of each alkylation reactor is optimized in order to reduce the chance of transalkylation reactions but increase ethylbenzene selectivity. The byprodu...
متن کاملA kinetic approach to the alkylating potential of carcinogenic lactones.
The alkylating potential of beta-propiolactone (BPL), beta-butyrolactone (BBL), gamma-butyrolactone, and delta-valerolactone, which can be formed by the in vivo nitrosation of primary amino acids, was investigated kinetically. The nucleophile NBP, 4-(p-nitrobenzyl)pyridine, a trap for alkylating agents, was used as an alkylation substrate. The alkylation reactions were performed under mimicked ...
متن کاملRemoval of styrene from air by photocatalytic process of Zeolite Socony Mobil-5 coated with zinc oxide nanoparticles
Background: Volatile organic compounds (VOC) are considered as major environmental contaminants that have a harmful effect on human and ecosystem health, so much effort has been focused on their removal. The aim of this study was to investigate the removal efficiency of styrene by Zeolite Socony Mobil-5 (ZSM-5) after immobilization of nanoparticles of zinc oxide (ZnO) on it. Materials and Meth...
متن کاملKinetic mechanism of the enantioselective conversion of styrene oxide by epoxide hydrolase from Agrobacterium radiobacter AD1.
Epoxide hydrolase from Agrobacterium radiobacter AD1 catalyzes the enantioselective hydrolysis of styrene oxide with an E value of 16. The (R)-enantiomer of styrene oxide is first converted with a k(cat) of 3.8 s(-1), and the conversion of the (S)-enantiomer is inhibited. The latter is subsequently hydrolyzed with a k(cat) of 10.5 s(-1). The pre-steady-state kinetic parameters were determined f...
متن کاملPURINE ALKYLATING AGENTS 2 , 6-DIAMINO-8-HALO ALKYL PURINES (POTENTIAL ANTI - MALARIALS)
Haloalkyl purines i.e. 2,6-diamino-8-(chloromethyl) purine 10; 2, 6-diamino-X- (chloromethyl) purine 17; 2,6-diamino-8-(chloropropylp) urine 18; were synthesized by two distinct but facile methods. The N-alkylating potential of 2, 6-diamino-8- (chloromethyl) purine was investigated. The following products 2,6-diamino-8-(Nbenzyl- N-methyl) purine 11; 2,6-diamino-8-(4-nitro anilinomethyl) pur...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Chemical research in toxicology
دوره 27 10 شماره
صفحات -
تاریخ انتشار 2014